Answer:
[tex]R(x) = - 16x^2+2392x + 1200[/tex]
Step-by-step explanation:
Given
[tex]d(x) = 1200 - 8x[/tex]
[tex]p(x) = 2x + 1[/tex]
Required
Find R(x)
We have that:
[tex]R(x) = d(x).p(x)[/tex]
This gives:
[tex]R(x) = (1200 - 8x) * (2x + 1)[/tex]
Expand
[tex]R(x) = 1200* (2x + 1) - 8x* (2x + 1)[/tex]
Open brackets
[tex]R(x) = 2400x + 1200 - 16x^2 -8x[/tex]
Collect Like Terms
[tex]R(x) = - 16x^2 -8x+2400x + 1200[/tex]
[tex]R(x) = - 16x^2+2392x + 1200[/tex]