Equation of the ellipse = 3x² + 5y² = 32
The equation of an ellipse is given by,
[tex]\sf \dfrac{x^2}{a^2} +\dfrac{y^2}{b^2} =1[/tex]
Given that the ellipse passes through the point (-3, 1)
Hence,
[tex]\sf \dfrac{(-3)^2}{a^2} +\dfrac{1^2}{b^2} =1[/tex]
Cross multiplying we get,
Multiply by 4 on both sides,
Also by given the ellipse passes through the point (2, -2)
Substituting this,
[tex]\sf \dfrac{2^2}{a^2} +\dfrac{(-2)^2}{b^2} =1[/tex]
Cross multiply,
Subtracting equations 2 and 1,
Substituting in 2,
Substituting the values in the equation for ellipse,
[tex]\sf \dfrac{x^2}{32/3} +\dfrac{y^2}{32/5} =1[/tex]
[tex]\sf \dfrac{3x^2}{32} +\dfrac{5y^2}{32} =1[/tex]
Multiplying whole equation by 32 we get,
3x² + 5y² = 32