Respuesta :
Answer:
[tex]\frac{1-\tan x }{1+\cot x}[/tex]
Step-by-step explanation:
Let [tex]\frac{\sin 2x+\cos 2x-1}{\sin 2x+\cos 2x + 1}[/tex], we proceed to prove the given identity by trigonometric and algebraic means:
1) [tex]\frac{\sin 2x+\cos 2x-1}{\sin 2x+\cos 2x + 1}[/tex] Given
2) [tex]\frac{2\cdot \sin x \cdot \cos x +\cos ^{2}x - \sin^{2}x-1}{2\cdot \sin x \cdot \cos x +\cos ^{2}x - \sin^{2}x+1}[/tex] [tex]\sin 2x = 2\cdot \sin x \cdot \cos x[/tex]/[tex]\cos 2x = \cos^{2}x - \sin^{2}x[/tex]
3) [tex]\frac{2\cdot \sin x \cdot \cos x -\sin^{2}x-(1-\cos^{2}x)}{2\cdot \sin x\cdot \cos x +\cos^{2}x+(1-\sin^{2}x)}[/tex] Commutative, associative and distributive properties/[tex]-a = (-1)\cdot a[/tex]
4) [tex]\frac{2\cdot \sin x \cdot \cos x -2\cdot \sin^{2}x}{2\cdot \sin x \cdot \cos x +2\cdot \cos^{2}x}[/tex] [tex]\sin^{2}x + \cos^{2}x = 1[/tex]
5) [tex]\frac{(2\cdot \sin x)\cdot (\cos x-\sin x)}{(2\cdot \cos x)\cdot (\sin x +\cos x)}[/tex] Distributive and associative properties.
6) [tex]\frac{\sin x\cdot (\cos x-\sin x)}{\cos x\cdot (\sin x +\cos x)}[/tex] Existence of multiplicative inverse/Commutative and modulative properties.
7) [tex]\frac{\frac{\cos x -\sin x}{\cos x} }{\frac{\sin x + \cos x}{\sin x} }[/tex] [tex]\frac{\frac{x}{y} }{\frac{w}{z} } = \frac{x\cdot z}{y\cdot w}[/tex]
8) [tex]\frac{\frac{\cos x}{\cos x}-\frac{\sin x}{\cos x} }{\frac{\sin x}{\sin x}+\frac{\cos x}{\sin x} }[/tex] [tex]\frac{x+y}{w} = \frac{x}{w} + \frac{y}{w}[/tex]
9) [tex]\frac{1-\tan x }{1+\cot x}[/tex] Existence of multiplicative inverse/[tex]\tan x = \frac{\sin x}{\cos x}[/tex]/[tex]\cot x = \frac{\cos x}{\sin x}[/tex]/Result