Given:
The expression is
[tex]2\log c+3\log k[/tex]
To find:
The value after condense the logarithm.
Solution:
We have,
[tex]2\log c+3\log k[/tex]
Using properties of logarithm, we get
[tex]=\log c^2+\log k^3[/tex] [tex][\because \log x^n=n\log x][/tex]
[tex]=\log (c^2k^3)[/tex] [tex][\because \log (ab)=\log a+\log b][/tex]
Therefore, the required value is [tex]\log (c^2k^3)[/tex].