Respuesta :

Given:

The expression is

[tex]2\log c+3\log k[/tex]

To find:

The value after condense the logarithm.

Solution:

We have,

[tex]2\log c+3\log k[/tex]

Using properties of logarithm, we get

[tex]=\log c^2+\log k^3[/tex]            [tex][\because \log x^n=n\log x][/tex]

[tex]=\log (c^2k^3)[/tex]            [tex][\because \log (ab)=\log a+\log b][/tex]

Therefore, the required value is [tex]\log (c^2k^3)[/tex].