Given:
The function is
[tex]A(x)=(3x-3)(3x+2)[/tex]
To find:
The simplified form of A(x) and value of A(x) at x=1.
Solution:
We have,
[tex]A(x)=(3x-3)(3x+2)[/tex]
[tex]A(x)=(3x)(3x)+(3x)(2)+(-3)(3x)+(-3)(2)[/tex]
[tex]A(x)=9x^2+6x-9x-6[/tex]
[tex]A(x)=9x^2-3x-6[/tex]
Putting x=1, we get
[tex]A(1)=9(1)^2-3(1)-6[/tex]
[tex]A(1)=9-3-6[/tex]
[tex]A(1)=9-9[/tex]
[tex]A(1)=0[/tex]
Therefore, the simplified form of A(x) is [tex]A(x)=9x^2-3x-6[/tex] and the value of A(x) at x=1 in 0.