Answer:
[tex](x,y) = (6,2)[/tex]
Step-by-step explanation:
Given
[tex](x_1,y_1) = (5,5)[/tex]
[tex](x_2,y_2) = (8,-4)[/tex]
[tex]m:n = 1:2[/tex]
Required
Determine the coordinate of the partition
This is calculated using:
[tex](x,y) = (\frac{mx_2 + nx_1}{m + n},\frac{my_2 + ny_1}{m + n})[/tex]
Substitute values for m,n,x's and y's
[tex](x,y) = (\frac{1 * 8 + 2 * 5}{1+2},\frac{1*-4 + 2*5}{1 + 2})[/tex]
[tex](x,y) = (\frac{18}{3},\frac{6}{3})[/tex]
[tex](x,y) = (6,2)[/tex]