Answer:
Step-by-step explanation:
Given the expression
[tex]\lim_{x \to \ 0} \frac{sin^2x}{x}[/tex]
Substitute the value of x in the function
[tex]= \frac{sin ^2(0)}{0}\\= 0/0 (indeterminate) \\[/tex]
Apply l'hospital rule
[tex]\lim_{x \to \ 0} \frac{d/dx(sin^2x)}{d/dx(x)} \\= \lim_{x \to \ 0} \frac{(2sinxcosx)}{1} \\[/tex]
Substitute the value of x
= 2 sin(0)cos(0)
= 2 * 0 * 1
= 0
Hence the limit of the function is 0