Respuesta :

Answer:

Option B

Step-by-step explanation:

In this question , we just need to make "F" as the subject of the equation.

So, lets solve the equation.

[tex]R = \frac{F}{N + F}[/tex]

→ Multiplying (N + F) on both the sides ,

[tex]=> R \times (N + F) = \frac{F}{(N + F)} \times (N + F)[/tex]

[tex]=> RN + RF = F[/tex]

→ Substracting both the sides with RF ,

[tex]=> RN + RF - RF = F - RF[/tex]

[tex]=> RN = F - RF[/tex]

→ Taking F common from R.H.S ,

[tex]=> RN = F(1 - R)[/tex]

→ Dividing both the sides by (1 - R) ,

[tex]=> \frac{RN}{1 - R} = \frac{F(1 - R)}{(1 - R)}[/tex]

[tex]=> \frac{RN}{1 - R} = F[/tex]

∴ Hence , [tex]F = \frac{RN}{1 - R}[/tex]