Respuesta :

Answer:

The solution to the quadratic equation is:

[tex]x=4[/tex]

Thus, there will be one real zero.

Step-by-step explanation:

Given the equation

[tex]x^2+19=8x+3[/tex]

Subtract 19 from both sides

[tex]x^2+19-19=8x+3-19[/tex]

Simplify

[tex]x^2=8x-16[/tex]

Subtract 8x from both sides

[tex]x^2-8x=8x-16-8x[/tex]

Simplify

[tex]x^2-8x=-16[/tex]

Add (-4)² to both sides

[tex]x^2-8x+\left(-4\right)^2=-16+\left(-4\right)^2[/tex]

[tex]x^2-8x+\left(-4\right)^2=0[/tex]

Apply perfect square rule:  (a-b)² = a² - 2ab + b²

[tex]\left(x-4\right)^2=0[/tex]             ∵  [tex]x^2-8x+\left(-4\right)^2=\left(x-4\right)^2[/tex]

so solve

[tex]x-4=0[/tex]

Add 4 to both sides

[tex]x-4+4=0+4[/tex]

Simplifying

[tex]x=4[/tex]

Therefore, the solution to the quadratic equation is:

[tex]x=4[/tex]

Thus, there will be one real zero.

ACCESS MORE
EDU ACCESS
Universidad de Mexico