Respuesta :

Given:

The system of equations:

[tex]y=2x+4[/tex]

[tex]y=-\dfrac{10}{3}x+\dfrac{76}{3}[/tex]

To find:

The sum of the x- and y-values in the solution to the system of equations.

Solution:

We have,

[tex]y=2x+4[/tex]                ...(i)

[tex]y=-\dfrac{10}{3}x+\dfrac{76}{3}[/tex]                  ...(ii)

From (i) and (ii), we get

[tex]2x+4=-\dfrac{10}{3}x+\dfrac{76}{3}[/tex]

[tex]2x+\dfrac{10}{3}x=\dfrac{76}{3}-4[/tex]

[tex]\dfrac{6x+10x}{3}=\dfrac{76-12}{3}[/tex]

Multiply both sides by 3.

[tex]16x=64[/tex]

Divide both sides by 16.

[tex]x=\dfrac{64}{16}[/tex]

[tex]x=4[/tex]

Putting x=4 in (i), we get

[tex]y=2(4)+4[/tex]

[tex]y=8+4[/tex]

[tex]y=12[/tex]

The solution of system of equations is (4,12).

[tex]x+y=4+12[/tex]

[tex]x+y=16[/tex]

Therefore, the sum of the x- and y-values in the solution to the system of equations is 16.

ACCESS MORE
EDU ACCESS
Universidad de Mexico