Answer:
The initial velocity vector of the ball is;
[tex]\underset{u}{\rightarrow}[/tex] = 25·i + 19.6·j
Explanation:
The given parameters are;
The time of flight of the ball = 4 seconds
The horizontal distance from the plate at which the ball is caught = 100 m
Let 'u', represent the initial velocity, we have;
u × cos(θ) × t = u × cos(θ) × 4 s = 100 m
u × cos(θ) = 25 m/s...(1)
[tex]t = \dfrac{2 \cdot u \cdot sin(\theta)}{g} = \dfrac{2 \cdot u \cdot sin(\theta)}{9.8 \ m/s^2} = 4 \ seconds[/tex]
∴ 2·u·sin(θ) = 9.8 m/s² × 4 s = 39.2 m/s
[tex]\therefore \dfrac{2 \cdot u \cdot sin(\theta)}{u \cdot cos(\theta)} = 2 \cdot tan(\theta) = \dfrac{39.2 \ m/s}{25 \ m/s} = 1.568[/tex]
tan(θ) = 1.568/2 = 0.784
θ = arctan(0.784) ≈ 38.096°
The direction of the velocity vector of the ball, θ ≈ 38.096°
From equation (1), we have;
u × cos(θ) = 25 m/s
∴ u = 25 m/s/cos(θ) = 25 m/s/cos(arctan(0.784)) = 31.7672787629 m/s
The magnitude of the initial velocity vector, u = 31.7672787629 m/s
The vertical component of the initial velocity, [tex]u_y[/tex] = u × sin(θ)
∴ [tex]u_y[/tex] = 31.7672787629 × sin(arctan(0.784))
Therefore, the initial velocity vector of the ball is approximately, v = 31.767 m/s in a direction 38.096° above the horizontal, from which we have;
u = uₓ·i + [tex]u_y[/tex]·j = 25·i + 19.6·j
[tex]\underset{u}{\rightarrow}[/tex] = 25·i + 19.6·j