Answer:
Both vehicles move east at 3.97 m/s
Explanation:
Law Of Conservation Of Linear Momentum
It states that the total momentum of a system of bodies is conserved unless an external force is applied to it. The formula for the momentum of a body with mass m and speed v is:
P=mv.
If we have a system of two bodies, then the total momentum is the sum of both momentums:
[tex]P=m_1v_1+m_2v_2[/tex]
If a collision occurs and the velocities change to v', the final momentum is:
[tex]P'=m_1v'_1+m_2v'_2[/tex]
Since the total momentum is conserved, then:
P = P'
[tex]m_1v_1+m_2v_2=m_1v'_1+m_2v'_2[/tex]
Assume both masses stick together after the collision at a common speed v', then:
[tex]m_1v_1+m_2v_2=(m_1+m_2)v'[/tex]
The common velocity after this situation is:
[tex]\displaystyle v'=\frac{m_1v_1+m_2v_2}{m_1+m_2}[/tex]
Assuming east direction to be positive, we have an m1=1459 kg car traveling west at v1=-43 m/s. An m2=9755 kg truck is traveling east at v2=11 m/s. They collide head-on and stick together after that.
Computing the resultant velocity after the collision:
[tex]\displaystyle v'=\frac{1459*(-43)+9755*11}{1459+9755}[/tex]
[tex]\displaystyle v'=\frac{44568}{11214}[/tex]
v' = 3.97 m/s
Both vehicles move east at 3.97 m/s