Answer:
The velocity after the collision is 2.82 m/s
Explanation:
Law Of Conservation Of Linear Momentum
It states the total momentum of a system of bodies is conserved unless an external force is applied to it. The formula for the momentum of a body with mass m and speed v is
P=mv.
If we have a system of two bodies, then the total momentum is the sum of the individual momentums:
[tex]P=m_1v_1+m_2v_2[/tex]
If a collision occurs and the velocities change to v', the final momentum is:
[tex]P'=m_1v'_1+m_2v'_2[/tex]
Since the total momentum is conserved, then:
P = P'
Or, equivalently:
[tex]m_1v_1+m_2v_2=m_1v'_1+m_2v'_2[/tex]
If both masses stick together after the collision at a common speed v', then:
[tex]m_1v_1+m_2v_2=(m_1+m_2)v'[/tex]
The common velocity after this situation is:
[tex]\displaystyle v'=\frac{m_1v_1+m_2v_2}{m_1+m_2}[/tex]
There is an m1=3.91 kg car moving at v1=5.7 m/s that collides with an m2=4 kg cart that was at rest v2=0.
After the collision, both cars stick together. Let's compute the common speed after that:
[tex]\displaystyle v'=\frac{3.91*5.7+4*0}{3.91+4}[/tex]
[tex]\displaystyle v'=\frac{22.287}{7.91}[/tex]
[tex]\boxed{v' = 2.82\ m/s}[/tex]
The velocity after the collision is 2.82 m/s