You perform nine (identical) measurements of the acceleration of gravity (units of m/s2): 10.1,9.87, 9.76, 9.91, 9.75, 9.88, 9.69, 9.83, and 9.90. The true value is 9.81. Calculate the standard error of your results to ONE significant digit.

Respuesta :

fichoh

Answer:

0.01

Explanation:

Given the data:

10.1,9.87, 9.76, 9.91, 9.75, 9.88, 9.69, 9.83, 9.90

True value = 9.81

Mean value :

Σx / n

Sample size, n = 9

(10.1 + 9.87 + 9.76 + 9.91 + 9.75 + 9.88 + 9.69 + 9.83 + 9.90) / 9

= 88.69 / 9

= 9.854

Standard deviation (σ) :

Sqrt (Σ(X - m)² / n)

[(10.1 - 9.854)^2 + (9.87 - 9.854)^2 + (9.76 - 9.854)^2 + (9.91 - 9.854)^2 + (9.75 - 9.854)^2 + (9.88 - 9.854)^2 + (9.69 - 9.854)^2 + (9.83 - 9.854)^2 + (9.90 - 9.854)^2] / 9

Sqrt(0.113824 / 9)

Sqrt(0.0126471)

σ = 0.1124593

Standard Error = σ / sqrt(n)

Standard Error = 0.1124593 / 9

Standard Error = 0.0124954

Standard Error = 0.01 ( 1 significant digit)

ACCESS MORE
EDU ACCESS