Answer:
5162.539 g
Explanation:
Let assume that the volume changes from [tex]4.00 \times 10^6 \ L[/tex] to [tex]4.50 \times 10^6 \ L[/tex].
And if the addition of energy as heat is [tex]1.3 \times 10^8 \ J[/tex]
Then; we can say that the total heat that is taken by the ballon = [tex]1.3 \times 10^8 \ J[/tex]
[tex]= 1.3 \times 10^5 \ kJ[/tex]
The total heat supplied = total heat coming from the combustion of propane
∴
[tex]= \dfrac{100}{50} \times 1.3 \times 10^5 \ kJ[/tex]
[tex]= 2.6 \times 10^5 \ kJ[/tex]
[tex]C_3 H_{8(g)} + 5O_{2(g)} \to #CO_{2(g)} + 4H_2O_{(l)} \ \ \Delta H = -2221 \ kJ[/tex]
If 2221 kJ is produced as a result of the combustion of 44.1 g [tex]C_3H_{8(g)}[/tex]
Then;
[tex]2.6 \times 10^5 kJ[/tex] will produce [tex]= \Big( \dfrac{44.1 \times 2.6 \times 10^5}{2221} \Big ) \ g[/tex]
= 5162.539 g
Thus, the mass of the propane that must be burned = 5162.539 g