Respuesta :
Answer:
Step-by-step explanation:
(a)
For the two proporion confidence interval p1-p2
# by default R = 95% confidence interval
The R-code = prop.test(X = c(123,690, n=c (200, 100))
where;
x - takes favorable cases
n - sample size
(b)
Here;
[tex]H_o : p_1 =p_2[/tex]
[tex]H_1 : p_1 > p_2[/tex]
The R-code = prop.test (X = c(123,690, n=c (200, 100)), alternative = "greater", conf.int = 0.99)
Now;
From the information given;
out of 200 democrats, 123 voted yes;
[tex]p_1 = \dfrac{123}{200}[/tex]
[tex]p_1 = 0.615[/tex]
Since 69 voted yes out of 100 republicans, then:
[tex]p_2 = \dfrac{69}{100}[/tex]
[tex]p_2 =0.69[/tex]
For pooled proportion;
[tex]\hat p = \dfrac{n_1p_1+n_2p_2}{200 + 100}[/tex]
[tex]\hat p = \dfrac{123+69}{200 + 100}[/tex]
[tex]\hat p = \dfrac{192}{300}[/tex]
[tex]\hat p = 0. 64[/tex]
Since p = 0.64
Then; q = 1 - p
q = 1 - 0.64
q = 0.36
∴
The confidence interval for the difference in population proportion
[tex]= (p_1 - p_2 ) \pm z_{\alpha/2} \sqrt{(pq)(\dfrac{1}{n_1}+\dfrac{1}{n_2}) }[/tex]
[tex]C.I = 1 - \alpha \\ \\ C.I = 1 - 0.95 = 0.05[/tex]
[tex]z_{\alpha /2} = z_{0.05 /2} \\ \\ z_{0.025} = 1.96[/tex]
∴
[tex]= (0.615- 0.69) \pm 1.96 \sqrt{(0.64 \times 0.36)(\dfrac{1}{100}+\dfrac{1}{200}) }[/tex]
[tex]= -0.075 \pm 0.11522[/tex]
[tex]= (-0.075 - 0.11522,-0.075 + 0.11522)[/tex]
[tex]= (-0.19022,0.04022)[/tex]
∴
Lower limit = -0.19022
upper limit = 0.04022
Thus; the 95% confidence interval lies between:
-0.19022 < p1 - p2 < 0.04022
b)
Recall that:
Null hypothesis:
[tex]H_o :p_1 = p_2[/tex]
Alternative hypothesis:
[tex]H_1 : p_1 > p_2[/tex]
This is a right-tailed test.
The z test statistics can be computed as:
[tex]z = \dfrac{\hat p_1 - \hat p_2}{\sqrt{pq(\dfrac{1}{n_1} + \dfrac{1}{n_2} )}}[/tex]
[tex]z = \dfrac{0.615 -0.69}{\sqrt {(0.64*0.36) (\dfrac{1}{100} + \dfrac{1}{200} )}}[/tex]
[tex]z = -1.276[/tex]
P-value = P(Z > -1.276)
P-value = 0.899
Decision rule: Reject the null hypothesis if P-value < level of significance at 0.01
Conclusion: We fail to reject the null hypothesis since P-value is greater than the level of significance and we conclude that there is insufficient evidence to say that more democrats favor the issue at the 1% level of significance than the republicans.