Respuesta :

Step-by-step explanation:

[tex] \underline{ \underline{ \text{Given}}} : [/tex]

  • -4x - y = 19 -------- Equation ( i )
  • x - 2y = -7 ----------- Equation ( ii )

[tex] \underline{ \underline{ \text{To \: find}}} : [/tex]

  • Value of x & y

[tex] \underline {\underline{ \text{ Solution}}} : [/tex]

From equation ( i ) :

-4x - y = 19

-y = 19 + 4x

-y = - ( -19 - 4x )

y = -4x - 19 ------ Equation ( iii )

Substituting the value of y from equation ( iii ) in equation ( ii ) , we get :

[tex] \tt{x - 2y = - 7 }[/tex]

⇾ [tex] \tt{x - 2( - 4x - 19) = - 7}[/tex]

⇾ [tex] \tt{x + 8x + 38 = - 7}[/tex]

⇾ [tex] \tt{9x = - 7 - 38}[/tex]

⇾ [tex] \tt{9x = - 45}[/tex]

⇾ [tex] \tt{x = \frac{ - 45}{9}} [/tex]

⇾ [tex] \boxed{ \tt{x = - 5}}[/tex]

Substituting the value of x in equation ( i ) , we get :

⇾ [tex] \tt{ - 5 - 2y = - 7}[/tex]

⇾ [tex] \tt{ - 2y = - 7 + 5}[/tex]

⇾ [tex] \tt{ - 2y = - 2}[/tex]

⇾ [tex] \tt{y = \frac{ - 2}{ - 2}} [/tex]

⇾ [tex] \boxed{ \tt{y = 1}}[/tex]

The possible solution of the system is ordered pair ( x , y ) = ( -5 , 1 ) .

[tex] \red{ \boxed{ \boxed { \tt{Our \: final \: answer : \boxed{ \tt{( - 5 \:, 1 \: )}}}}}}[/tex]

Hope I helped ! ツ

Have a wonderful day / night ! ♡

▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁

RELAXING NOICE
Relax