Respuesta :

Answer:

x = 16√3

y = 8√3

z = 24

Step-by-step explanation:

From the figure attached,

By applying cosine rule in ΔABD,

cos(45°) = [tex]\frac{\text{Adjacent side}}{\text{Hypotenuse}}[/tex]

[tex]\frac{1}{\sqrt{2} }=\frac{z}{24\sqrt{2} }[/tex]

z = 24

By applying sine rule in ΔABD,

sin (45°) = [tex]\frac{\text{Opposite side}}{\text{Hypotenuse}}[/tex]

[tex]\frac{1}{\sqrt{2} }=\frac{AD}{24\sqrt{2} }[/tex]

AD = 24

By tangent rule in ΔADC,

tan(60)° = [tex]\frac{\text{Opposite side}}{\text{Adjacent side}}[/tex]

[tex]\sqrt{3}=\frac{AD}{DC}[/tex]

[tex]\sqrt{3}=\frac{24}{y}[/tex]

y = 8√3

Similarly, by sine rule in ΔADC,

sin(60°) = [tex]\frac{\text{Opposite side}}{\text{Hypotenuse}}[/tex]

[tex]\frac{\sqrt{3} }{2}= \frac{AD}{AC}[/tex]

[tex]\frac{\sqrt{3} }{2}= \frac{24}{AC}[/tex]

AC = 16√3

x = 16√3

Ver imagen eudora
ACCESS MORE
EDU ACCESS
Universidad de Mexico