Answer:
See explanation.
Explanation:
Hello!
In this case, we consider the questions:
a. Ideal gas at:
i. 273.15 K and 22.414 L.
ii. 500 K and 100 cm³.
b. Van der Waals gas at:
i. 273.15 K and 22.414 L.
ii. 500 K and 100 cm³.
Thus, we define the ideal gas equation and the van der Waals one as shown below:
[tex]P^{id}=\frac{nRT}{V}\\\\ P^{vdW}=\frac{RT}{v-b}-\frac{a}{v^2}[/tex]
Whereas b and a for hydrogen sulfide are 0.0434 L/mol and 4.484 L²*atm / mol² respectively, therefore, we proceed as follows:
a.
i. 273.15 K and 22.414 L.
[tex]P^{id}=\frac{1.00mol*0.08206\frac{atm*L}{mol*K}*273.15K}{22.414L}=1 .00 atm[/tex]
ii. 500 K and 100 cm³ (0.1 L).
[tex]P^{id}=\frac{1.00mol*0.08206\frac{atm*L}{mol*K}*500K}{0.100L}=410.3 atm[/tex]
b.
i. 273.15 K and 22.414 L: in this case, v = 22.414 L / 1.00 mol = 22.414 L/mol
[tex]P^{vdW}=\frac{0.08206\frac{atm*L}{mol*K}*273.15K}{22.414L/mol-0.0434L/mol}-\frac{4.484 atm*L^2/mol^2}{(22.414L/mol)^2}=0.993atm[/tex]
ii. 500 K and 100 cm³: in this case, v = 0.1 L / 1.00 mol = 0.100 L/mol
[tex]P^{vdW}=\frac{0.08206\frac{atm*L}{mol*K}*500K}{0.100L/mol-0.0434L/mol}-\frac{4.484 atm*L^2/mol^2}{(0.100L/mol)^2}=276.5atm[/tex]
Whereas we can see a significant difference when the gas is at 500 K and occupy a volume of 0.100 L.
Best regards!