Respuesta :
Answer:
after 0.8411 seconds, the balls are at the same height
Explanation:
given the data in the question;
we take a look at the equation which relates the vertical displacement of the object, time elapsed, initial velocity and acceleration of the object;
Δy = [tex]V_{i}[/tex]t + [tex]\frac{1}{2}[/tex] [tex]a_{y}[/tex]t²
where Δy is the vertical displacement, [tex]V_{i}[/tex] is the initial velocity, [tex]a_{y}[/tex] is acceleration of the object and t is time elapsed.
Now let h represent the height above ground level where they meet.
so the distance moved by the falling ball will be;
18 m - h
The ball is moving freely under the influence of gravity.
so [tex]a_{y}[/tex] = -g
Using kinematic relation a freely falling ball
Δy = [tex]V_{i}[/tex]t + [tex]\frac{1}{2}[/tex] [tex]a_{y}[/tex]t²
-( 18 m - h ) = 0 - [tex]\frac{1}{2}[/tex]gt²
-18 m + h = - [tex]\frac{1}{2}[/tex]gt²
h = 18 m - [tex]\frac{1}{2}[/tex]gt² --------- let this be equ1
Now lets apply kinematic relation to the raising ball
h = (21.4 m/s)t - [tex]\frac{1}{2}[/tex]gt² ----------- let this be equ 2
so equ1 = equ2
18 m - [tex]\frac{1}{2}[/tex]gt² = (21.4 m/s)t - [tex]\frac{1}{2}[/tex]gt²
18 m = (21.4 m/s)t
t = 18 m / 21.4 m/s
t = 0.8411 s
Therefore, after 0.8411 seconds, the balls are at the same height