Answer:
[tex]x^{2} +y^{2} = 45[/tex]
Step-by-step explanation:
General Equation of circle is
[tex](x-x_1)^{2} +(y-y_1)^{2} = r^{2}[/tex]----------- (1)
Here
[tex](x_1, y_1)= (0, 0)[/tex]
Radius r is distance from origin (x1, y1) to point (x2, y2)=(-3, -6)
[tex]r=\sqrt{(x_2-x_1)^{2} + (y_2-y_1)^{2} }[/tex]
[tex]r= \sqrt{(-3-0)^{2} + (-6-0)^{2} }[/tex]
[tex]r= \sqrt{9+36}[/tex]
[tex]r=\sqrt{45}[/tex]
Substituting values in equation (1)
[tex](x-0)^{2} +(y-0)^{2} =( \sqrt{45})^{2}[/tex]
[tex]x^{2} +y^{2} = 45[/tex]