Respuesta :
Is a set of elements of a vector space that a given Linear transformation maps to zero
Answer:
part a)
velocity is given as
[tex]\vec v = ( 1 + \frac{\alpha t^3}{3})\hat i + (7 + \beta t - \frac{\gamma t^2}{2})\hat j[/tex]
position is given as
[tex]\vec r = (t +\frac{ \alpha t^4}{12})\hat i + (7t +\frac{ \beta t^2}{2} - \frac{\gamma t^3}{6})\hat j[/tex]
Part b)
maximum height is given as
[tex]y_{max} = 341.4 m[/tex]
Part c)
Path will be the curved path
Part d)
displacement in x direction will be
[tex]x = 39328 m[/tex]
Explanation:
[tex]a_x = \alpha t^2 [/tex]
[tex]a_y = \beta - \gamma t[/tex]
also we know the initial velocity as
[tex]v_0 = 1\hat i + 7 \hat j[/tex]
part a)
from acceleration in x direction we can say
[tex]a_x = \frac{dv_x}{dt} = \alpha t^2[/tex]
[tex]\int dv_x = \int \alpha t^2 dt[/tex]
[tex]v_x - 1 = \frac{\alpha t^3}{3}[/tex]
[tex]v_x = 1 + \frac{\alpha t^3}{3}[/tex]
[tex]v_x = 1 + 0.83 t^3[/tex]
now again integrate both sides
[tex]\frac{dx}{dt} = (1 + 0.83 t^3)[/tex]
[tex]\int dx = \int(1 + 0.83 t^3) dt[/tex]
[tex] x = t +\frac{ \alpha t^4}{12}[/tex]
[tex]x = t + 0.21 t^4[/tex]
now similarly for y direction
[tex]a_y = \frac{dv_y}{dt} = \beta - \gamma t[/tex]
[tex]\int dv_y = \int (\beta - \gamma t) dt[/tex]
[tex]v_y - 7 = \beta t - \frac{\gamma t^2}{2}[/tex]
[tex]v_y = 7 + \beta t - \frac{\gamma t^2}{2}[/tex]
[tex]v_y = 7 + 9 t - 0.70 t^2[/tex]
now again integrate both sides
[tex]\frac{dy}{dt} = (7 + 9t - 0.70t^2)[/tex]
[tex]\int dy = \int(7 + 9t - 0.70t^2) dt[/tex]
[tex] y = 7t +\frac{ \beta t^2}{2} - \frac{\gamma t^3}{6}[/tex]
[tex]y = 7t + 4.5 t^2 - 0.233 t^3[/tex]
PART B)
For maximum height we know that velocity in y direction must be zero
so we will have
[tex]v_y = 0 = 7 + 9t - 0.70 t^2[/tex]
by solving above we have
[tex]t = 13.6 s[/tex]
now at this time the height is given as
[tex]y = 7t + 4.5 t^2 - 0.233 t^3[/tex]
[tex]y_{max} = 7(13.6) + 4.5(13.6)^2 - 0.233(13.6)^3[/tex]
[tex]y_{max} = 341.4 m[/tex]
PART C)
path of the rocket will be curved path in xy plane
PART D)
when y = 0 then we have
[tex]y = 0 = 7t + 4.5 t^2 - 0.233 t^3[/tex]
by solving above equation we have
[tex]t = 20.8 s[/tex]
now at this time position of X is given as
[tex]x = t + 0.21 t^4[/tex]
[tex]x = 20.8 + 0.21(20.8)^4[/tex]
[tex]x = 39328 m[/tex]
