Respuesta :

Answer:

Options (2), (4) and (6)

Step-by-step explanation:

Option (1)

[tex]8^{-1}=\frac{1}{8}[/tex]

Not equivalent to [tex]\frac{1}{81}[/tex].

False.

Option (2)

[tex]9^{-2}=\frac{1}{9^2}[/tex]

      [tex]=\frac{1}{81}[/tex]

True.

Option (3)

[tex]\frac{9^{8}}{9^{4}}=9^{(8-4)}[/tex]

    [tex]=9^{4}[/tex]

    = 6561

False.

Option (4)

[tex]\frac{9^8}{9^{10}}=9^{8-10}[/tex]

     [tex]=9^{-2}[/tex]

     [tex]=\frac{1}{81}[/tex]

True.

Option (5)

[tex]9^{-6}9^{3}[/tex] = [tex]9^{-6+3}[/tex]

         = [tex]9^{-3}[/tex]

         = [tex]\frac{1}{9^3}[/tex]

         = [tex]\frac{1}{729}[/tex]

False

Option (6)

[tex]9^{5}9^{-7}=9^{(5-7)}}[/tex]

          [tex]=9^{-2}[/tex]

          [tex]=\frac{1}{9^2}[/tex]

           [tex]=\frac{1}{81}[/tex]

True.

Therefore, Options (2), (4) and (6) are the correct options.

Applying the negative exponent rule of power, the expressions that are equivalent to the given expression, 1/81, are: B, D, and F.

What is the Negative Exponent Rule of Power?

The negative exponent rule states that: [tex]a^{-n} = \frac{1}{a^n}[/tex].

Thus, given the expression, 1/81, it can be rewritten or simplified as follows:

1/81 = [tex]81^{-1} = 9^{-2}[/tex] = [tex]\frac{9^8}{9^{10}}[/tex] = [tex]9^5 \times 9^{-7}[/tex]

The expressions that will be equivalent to 1/81 can be expressed, based on the negative exponent rule of power, as:

[tex]9^{-2}, \frac{9^8}{9^{10}} , 9^5 \times 9^{-7}[/tex] (option B, D, and F).

Learn more about negative exponent rule on:

https://brainly.com/question/11975096

#SPJ5

RELAXING NOICE
Relax