Respuesta :
Solution :
Given :
The steady state flow = 8000 [tex]$ m^3 /d $[/tex]
[tex]$= 80 \times 10^5 \ I/d $[/tex]
The concentration of the particulate matter = 18 mg/L
Therefore, the total quantity of a particulate matter in fluid [tex]$= 80 \times 10^5 \ I/d \times 18 \ mg/L $[/tex]
[tex]$= 144 \times 10^6 \ mg/g$[/tex]
[tex]$= 144 \ kg/d $[/tex]
If 60 mg of alum [tex]$ [Al_2(SO_4)_3.14 H_2O] $[/tex] required for one litre of the water treatment.
So Alum required for [tex]$ 80 \times 10^5 \ I/d $[/tex]
[tex]$= 80 \times 15^5 \ I/d \times 60 \ mg \ alum /L$[/tex]
[tex]$= 480 \times 10^6 \ mg/d $[/tex]
or 480 kg/d
Therefore the alum required is 480 kg/d
1 mg of the alum gives 0.234 mg alum precipitation, so 60 mg of alum will give [tex]$ = 60 \times 0.234 \text{ of alum ppt. per litre} $[/tex]
[tex]$= 14.04 $[/tex] mg of alum ppt. per litre
480 kg of alum will give = 480 x 0.234 kg/d
= 112.32 kg/d ppt of alum
Daily total solid load is [tex]$= 144 \ kg/d + 112.32 \ kg/d$[/tex]
= 256.32 kg/d
So, the total concentration of the suspended solid after alum addition [tex]$= 18 \ mg/L + 60 \times 0.234 $[/tex]
= 32.04 mg/L
Therefore total alum requirement = 480 kg/d
b). Initial pH = 7.4
The dissociation reaction of aluminium hydroxide as follows :
[tex]$Al(OH)_3 \rightleftharpoons Al^{3+} + 3OH^{-} $[/tex]
After addition, the aluminium hydroxide pH of water will increase due to increase in [tex]$ OH^- $[/tex] ions.
Therefore, the pH of water will be acceptable range after the addition of aluminium hydroxide.
c). The reaction of [tex]$CO_2$[/tex] and water as follows :
[tex]$CO_2 (g) + H_2O (l) \rightarrow H_2CO_3$[/tex]
For the atmospheric pressure :
[tex]$p_{CO_2} = 3.5 \times 10^{-4} \ atm $[/tex]
And the pH is reduced into the range of 5.9 to 6.4