GEOMETRY
*image is attached above*

Answer:
(-9.5, -4)
Step-by-step explanation:
Given the ratio a:b (a to b) of two segments formed by a point of partition, and the endpoints of the original segment, we can calculate the point of partition using this formula:
[tex]( \frac{a }{a + b} (x_{2} - x_{1}) + x_{1}, \frac{a}{a + b} (y_{2} - y_{1})+y_{1})[/tex].
Given two endpoints of the original segment
→ (-10, -8) [(x₁, y₁)] and (-8, 8) [(x₂, y₂)]
Along with the ratio of the two partitioned segments
→ 1 to 3 = 1:3 [a:b]
Formed by the point that partitions the original segment to create the two partitioned ones
→ (x?, y?)
We can apply this formula and understand how it was derived to figure out where the point of partition is.
Here is the substitution:
x₁ = -10
y₁ = -8
x₂ = -8
y₂ = 8
a = 1
b = 3
[tex]( \frac{a }{a + b} (x_{2} - x_{1}) + x_{1}, \frac{a}{a + b} (y_{2} - y_{1})+y_{1})[/tex]. →
[tex]( \frac{(1) }{(1) + (3)} ((-8) - (-10)) + (-10), \frac{(1)}{(1) + (3)} ((8) - (-8))+ (-8))[/tex] →
[tex]( \frac{1}{4} ((-8) - (-10)) + (-10), \frac{1}{4}((8) - (-8)) + (-8))[/tex] →
[tex]( \frac{1}{4} (2) + (-10), \frac{1}{4}(16) + (-8))[/tex] →
[tex]( (\frac{1}{2}) + (-10), (4) + (-8))[/tex] →
[tex]( (-\frac{19}{2}), (-4))[/tex] →
[tex]( -\frac{19}{2}, -4)[/tex] →
*[tex]( -9.5, -4)[/tex]*
Now the reason why this