Answer:
h ≅ 16.29 cm
[tex]\mathbf{\dfrac{dh}{dt}= -0.1809 \ cm/s}[/tex]
Step-by-step explanation:
From the conical funnel;
Let the adjacent line at the base of the cone be radius (r) and the opposite ( vertical length) be the height (h)
Then;
[tex]tan \theta= \dfrac{r}{h}[/tex]
[tex]tan \theta= \dfrac{8}{16}[/tex]
[tex]tan \theta= \dfrac{1}{2}[/tex]
∴
[tex]\dfrac{r}{h} = \dfrac{1}{2}[/tex]
[tex]r = \dfrac{h}{2}[/tex]
The volume (V) of the cone is expressed as:
[tex]V = \dfrac{1}{3}\pi r ^2 h[/tex]
[tex]V = \dfrac{1}{3}\pi (\dfrac{h}{2})^2 h[/tex]
[tex]V = \dfrac{\pi h^3}{3\times 4}[/tex]
[tex]\dfrac{dv}{dt} = \dfrac{3 \pi h^2}{3 \times 4} \dfrac{dh}{dt}[/tex]
[tex]\dfrac{dv}{dt} = \dfrac{ \pi h^2}{4} \dfrac{dh}{dt}[/tex]
Given that:
[tex]\dfrac{dv}{dt} = 12 \pi[/tex]
Then:
[tex]-12 \pi = \dfrac{ \pi h^2}{4} \dfrac{dh}{dt}[/tex]
[tex]- \int 48 \ dt = \int h^2 \ dh[/tex]
[tex]\dfrac{h^3}{3}= -48 t + c[/tex]
[tex]At \ t = 0 \ ; h = 0[/tex]
∴
[tex]\dfrac{0^3}{3} = -48(0) + c[/tex]
c = 0
So;
[tex]\dfrac{h^3}{3}= -48 t + 0[/tex]
[tex]\dfrac{h^3}{3}= -48 t[/tex]
t = 30
[tex]\implies h = (-48(30))^{1/3}[/tex]
h = 16.2865
h ≅ 16.29 cm
Thus;
from [tex]-12 \pi = \dfrac{ \pi h^2}{4} \dfrac{dh}{dt}[/tex]
[tex]\dfrac{-12 \pi} { \dfrac{ \pi h^2}{4} } =\dfrac{dh}{dt}[/tex]
[tex]\dfrac{dh}{dt} = \dfrac{-12 \pi} { \dfrac{ \pi h^2}{4} }[/tex]
[tex]\dfrac{dh}{dt}=\dfrac{-12 \times 4} { {16.29^2} }[/tex]
[tex]\mathbf{\dfrac{dh}{dt}= -0.1809 \ cm/s}[/tex]