The activation energy for a reaction is changed from 184 kJ/mol to 59.0 kJ/mol at 600. K by the introduction of a catalyst. If the uncatalyzed reaction takes about 6900 years to occur, about how long will the catalyzed reaction take

Respuesta :

Answer:

The catalyzed reaction will take 2.85 seconds to occur.

Explanation:

The activation energy of a reaction is given by:                                                        

[tex] k = Ae^{-\frac{E_{a}}{RT}} [/tex]

For the reaction without catalyst we have:

[tex] k_{1} = Ae^{-\frac{E_{a_{1}}}{RT}} [/tex]   (1)

And for the reaction with the catalyst:

[tex] k_{2} = Ae^{-\frac{E_{a_{2}}}{RT}} [/tex]   (2)

Assuming that frequency factor (A) and the temperature (T) are constant, by dividing equation (1) with equation (2) we have:                      

[tex] \frac{k_{1}}{k_{2}} = \frac{Ae^{-\frac{E_{a_{1}}}{RT}}}{Ae^{-\frac{E_{a_{2}}}{RT}}} [/tex]

[tex] \frac{k_{1}}{k_{2}} = e^{\frac{E_{a_{2}} - E_{a_{1}}}{RT} [/tex]    

[tex] \frac{k_{1}}{k_{2}} = e^{\frac{59.0 \cdot 10^{3}J/mol - 184 \cdot 10^{3} J/mol}{8.314 J/Kmol*600 K} = 1.31 \cdot 10^{-11} [/tex]    

Since the reaction rate is related to the time as follow:

[tex] k = \frac{\Delta [R]}{t} [/tex]

And assuming that the initial concentrations ([R]) are the same, we have:

[tex] \frac{k_{1}}{k_{2}} = \frac{\Delta [R]/t_{1}}{\Delta [R]/t_{2}} [/tex]

[tex]\frac{k_{1}}{k_{2}} = \frac{t_{2}}{t_{1}}[/tex]

[tex] t_{2} = t_{1}\frac{k_{1}}{k_{2}} = 6900 y*1.31 \cdot 10^{-11} = 9.04 \cdot 10^{-8} y*\frac{365 d}{1 y}*\frac{24 h}{1 d}*\frac{3600 s}{1 h} = 2.85 s [/tex]

Therefore, the catalyzed reaction will take 2.85 seconds to occur.

I hope it helps you!                            

RELAXING NOICE
Relax