Answer:
The volume of cone changing at rate [tex]\frac{400}{3}\pi in^3/s[/tex]
Step-by-step explanation:
Let r be the radius of cone and h be the height of cone
[tex]\frac{dr}{dt}=2 in/s[/tex]
[tex]\frac{dh}{dt}=-4 in/s[/tex]
We have to find the rate at which the volume of cone changing when r=10 in and h=20 in
Volume of cone
[tex]V=\frac{1}{3}\pi r^2 h[/tex]
Differentiate w.r.t t
[tex]\frac{dV}{dt}=\frac{1}{3}\pi (2rh\frac{dr}{dt}+r^2\frac{dh}{dt})[/tex]
Substitute the values
[tex]\frac{dV}{dt}=\frac{1}{3}\pi(2\times 10\times 20\times 2+(10)^2\times (-4))[/tex]
[tex]\frac{dV}{dt}=\frac{1}{3}\pi(400)=\frac{400}{3}\pi in^3/s[/tex]
Hence, the volume of cone changing at rate [tex]\frac{400}{3}\pi in^3/s[/tex]