Answer:
[tex]Mean = 20[/tex]
[tex]SD = 2.31[/tex]
Step-by-step explanation:
Given
[tex]a = 16[/tex]
[tex]b = 24[/tex]
Solving (a): The mean
The mean of a uniform distribution is:
[tex]Mean = \frac{1}{2}(a + b)[/tex]
This gives:
[tex]Mean = \frac{1}{2}(16 + 24)[/tex]
[tex]Mean = \frac{1}{2}(40)[/tex]
[tex]Mean = 20[/tex]
Solving (b): The standard deviation
The standard deviation is:
[tex]SD = \sqrt{\frac{(b - a)^2}{12}}[/tex]
This gives:
[tex]SD = \sqrt{\frac{(24 - 16)^2}{12}}[/tex]
[tex]SD = \sqrt{\frac{(8)^2}{12}}[/tex]
[tex]SD = \sqrt{\frac{64}{12}}[/tex]
[tex]SD = \sqrt{5.333}[/tex]
[tex]SD = 2.31[/tex]