Respuesta :

Answer:

[tex]Mean = 20[/tex]

[tex]SD = 2.31[/tex]

Step-by-step explanation:

Given

[tex]a = 16[/tex]

[tex]b = 24[/tex]

Solving (a): The mean

The mean of a uniform distribution is:

[tex]Mean = \frac{1}{2}(a + b)[/tex]

This gives:

[tex]Mean = \frac{1}{2}(16 + 24)[/tex]

[tex]Mean = \frac{1}{2}(40)[/tex]

[tex]Mean = 20[/tex]

Solving (b): The standard deviation

The standard deviation is:

[tex]SD = \sqrt{\frac{(b - a)^2}{12}}[/tex]

This gives:

[tex]SD = \sqrt{\frac{(24 - 16)^2}{12}}[/tex]

[tex]SD = \sqrt{\frac{(8)^2}{12}}[/tex]

[tex]SD = \sqrt{\frac{64}{12}}[/tex]

[tex]SD = \sqrt{5.333}[/tex]

[tex]SD = 2.31[/tex]

ACCESS MORE
EDU ACCESS
Universidad de Mexico