Respuesta :
Answer:
a) [tex]E_{m}[/tex] = 133.75 Gpa
b) Fnet = 560 N
c) thermal expansion of the composite material = 14.31 [tex]10^{-6 }[/tex] / °C
Explanation:
Solution:
a) Elastic Modulus of the composite:
Area of steel wire = [tex]\frac{\pi }{4}[/tex] x ([tex]0.001^{2}[/tex]) = 0.8 x [tex]10^{-6}[/tex] [tex]m^{2}[/tex]
Area of Copper wire = [tex]\frac{\pi }{4}[/tex] x ([tex]0.002^{2}[/tex]) - 0.8 x [tex]10^{-6}[/tex] [tex]m^{2}[/tex]
Area of Copper wire = 2.4 x [tex]10^{-6}[/tex] [tex]m^{2}[/tex]
Young's Modulus of Composite mixture:
[tex]E_{m}[/tex] = [tex]F_{st}[/tex][tex]E_{st}[/tex] + [tex]F_{Cu}[/tex][tex]E_{Cu}[/tex] Equation 1
here,
[tex]F_{st}[/tex] = Stress in Steel
[tex]F_{Cu}[/tex] = Stress in Copper.
We know that,
F = P/A
F is inversely proportional to Area, so if area is large, stress will less and vice versa. So, Take
Ratio for area of steel = [tex]\frac{0.8. 10^{-6} }{(0.8 + 2.4) .10^{-6} }[/tex]
Ratio for area of steel = [tex]\frac{0.8}{3.2 }[/tex] = 0.25
Similarly, for Copper,
Ratio for area of copper = [tex]\frac{2.4. 10^{-6} }{(0.8 + 2.4) .10^{-6} }[/tex]
Ratio for area of copper = [tex]\frac{2.4 }{3.2}[/tex] = 0.75
Put these values in equation 1:
[tex]E_{m}[/tex] = [tex]F_{st}[/tex][tex]E_{st}[/tex] + [tex]F_{Cu}[/tex][tex]E_{Cu}[/tex]
[tex]E_{m}[/tex] = (0.25) [tex]E_{st}[/tex] + (0.75)[tex]E_{Cu}[/tex]
We are given that,
[tex]E_{st}[/tex] = 205 Gpa
[tex]E_{Cu}[/tex] = 110 Gpa
So,
[tex]E_{m}[/tex] = (0.25) (205 Gpa) + (0.75) (110 GPa)
[tex]E_{m}[/tex] = 51.25GPa + 82.5 Gpa
Hence, the Elastic Modulus of the composite will be:
[tex]E_{m}[/tex] = 133.75 Gpa
b) maximum force:
Fnet = Fst + Fcu
We know that F = (Yield Stress x Area)
F = fst x Ast + fcu x Acu
And we are given that,
Yield stress of Steel = 280 Mpa
Yield stress of Copper = 140 Mpa
And,
Ast = 0.8 x [tex]10^{-6}[/tex] [tex]m^{2}[/tex]
Acu = 2.4 x [tex]10^{-6}[/tex] [tex]m^{2}[/tex]
Just plugging in the values, we get:
F = (280 Mpa) (0.8 x [tex]10^{-6}[/tex] [tex]m^{2}[/tex]) + (140 Mpa) (2.4 x [tex]10^{-6}[/tex] [tex]m^{2}[/tex])
F = 224 + 336
Fnet = 560 N ( because Mpa = [tex]10^{6}[/tex] N/[tex]m^{2}[/tex])
So, it means the composite will carry the maximum force of 560N
c) Coefficient of Thermal Expansion:
Strain on both material is same upon loading so,
(ΔL/L)st = (ΔL/L)cu
by thermal expansion equation:
([tex]\alpha .[/tex]ΔT + [tex]\frac{F}{A}[/tex][tex]. \frac{1}{Est}[/tex]) = [tex]\alpha .[/tex]ΔT + [tex]\frac{F}{A}[/tex][tex]. \frac{1}{Ecu}[/tex])
Where [tex]\alpha[/tex] = Coefficient of Thermal expansion
Here, fst = -fcu = F
and ΔT = 1°
So,
Plugging in the values, we get.
( 10 x [tex]10^{-6}[/tex] x (1) + [tex]\frac{F}{0.8.10^{-6} } . \frac{1}{205 . 10^{9} }[/tex] ) = ( 17 x [tex]10^{-6}[/tex] x (1) + [tex]\frac{-F}{2.4.10^{-6} } . \frac{1}{110 . 10^{9} }[/tex] )
Solving for F, we get:
F = 0.71 N
Here,
fst = F = 0.71 N (Tension on Heating)
fcu = -F = 0.71 N ( Compression on Heating )
So, the combined thermal expansion of the composite material will be:
(ΔL/L)cu = ( 17 x [tex]10^{-6}[/tex] x (1°) + [tex]\frac{-0.71}{2.4.10^{-6} } . \frac{1}{110 . 10^{9} }[/tex] )
(ΔL/L)cu = ( 17 x [tex]10^{-6}[/tex] x (1°) - 2.69 x [tex]10^{-6}[/tex]
combined thermal expansion of the composite material = 14.31 [tex]10^{-6 }[/tex] / °C