Respuesta :

Answer:

10.7 g of ethyl butyrate would be synthesized in 100 % conversion

Explanation:

1 mol of butanoic acid produces 1 mol of ethyl butyrate in 100% conversion.

Number of moles = (mass/molar mass)

Molar mass of butanoic acid = 88.11 g/mol

Molar mass of ethyl butyrate = 116.16 g/mol

So, 8.10 g of butanoic acid = [tex]\frac{8.10}{88.11}moles[/tex]butanoic acid = 0.09193 moles of butanoic acid

So, in 100 % conversion, moles of ethyl butyrate would be produced = 0.09193 moles

So, in 100 % conversion, mass of ethyl butyrate would be produced = [tex](0.09193\times 116.16)g[/tex]= 10.7 g

[tex]\boxed{{\text{10}}{\text{.675 g}}}[/tex] of ethyl butyrate would be synthesized by 8.10 g of butanoic acid and excess ethanol.

Further Explanation:

Stoichiometry:

It is used to determine the amount of species present in the reaction by the relationship between reactants and products. It is used to determine the moles of a chemical species when moles of other chemical species present in the reaction is given.

Consider the general reaction,

[tex]{\text{A}} + 2{\text{B}} \to 3{\text{C}}[/tex]

Here,

A is the reactant.

B is the reactant.

C is the product.

One mole of A reacts with two moles of B to produce three moles of C. The stoichiometric ratio between A and B is 1:2, the stoichiometric ratio between A and C is 1:3 and the stoichiometric ratio between B and C is 2:3.

The given reaction occurs as follows:

[tex]{\text{C}}{{\text{H}}_3}{\text{C}}{{\text{H}}_2}{\text{C}}{{\text{H}}_2}{\text{COOH}} + {\text{C}}{{\text{H}}_{\text{3}}}{\text{C}}{{\text{H}}_{\text{2}}}{\text{OH}} \to {\text{C}}{{\text{H}}_3}{\text{C}}{{\text{H}}_2}{\text{C}}{{\text{H}}_2}{\text{COOC}}{{\text{H}}_{\text{2}}}{\text{C}}{{\text{H}}_3} + {{\text{H}}_{\text{2}}}{\text{O}}[/tex]

The formula to calculate the moles of [tex]{\text{C}}{{\text{H}}_3}{\text{C}}{{\text{H}}_2}{\text{C}}{{\text{H}}_2}{\text{COOH}}[/tex] is as follows:

[tex]{\text{Moles of C}}{{\text{H}}_3}{\text{C}}{{\text{H}}_2}{\text{C}}{{\text{H}}_2}{\text{COOH}} = \frac{{{\text{Given mass of C}}{{\text{H}}_3}{\text{C}}{{\text{H}}_2}{\text{C}}{{\text{H}}_2}{\text{COOH}}}}{{{\text{Molar mass of C}}{{\text{H}}_3}{\text{C}}{{\text{H}}_2}{\text{C}}{{\text{H}}_2}{\text{COOH}}}}[/tex]    ...... (1)

Substitute 8.10 g for the given mass of [tex]{\text{C}}{{\text{H}}_3}{\text{C}}{{\text{H}}_2}{\text{C}}{{\text{H}}_2}{\text{COOH}}[/tex]and 88.11 g/mol for the molar mass of [tex]{\text{C}}{{\text{H}}_3}{\text{C}}{{\text{H}}_2}{\text{C}}{{\text{H}}_2}{\text{COOH}}[/tex]in equation (1).

[tex]\begin{aligned}{\text{Moles of C}}{{\text{H}}_3}{\text{C}}{{\text{H}}_2}{\text{C}}{{\text{H}}_2}{\text{COOH}}&=\left({{\text{8}}{\text{.10 g}}} \right)\left( {\frac{{{\text{1 mol}}}}{{{\text{88}}{\text{.11 g}}}}}\right)\\&=0.091{\text{9 mol}}\\\end{aligned}[/tex]

According to the stoichiometry of the reaction, one mole of [tex]{\text{C}}{{\text{H}}_3}{\text{C}}{{\text{H}}_2}{\text{C}}{{\text{H}}_2}{\text{COOH}}[/tex] reacts with one mole of [tex]{\text{C}}{{\text{H}}_{\text{3}}}{\text{C}}{{\text{H}}_{\text{2}}}{\text{OH}}[/tex] to form one mole of [tex]{\text{C}}{{\text{H}}_3}{\text{C}}{{\text{H}}_2}{\text{C}}{{\text{H}}_2}{\text{COOC}}{{\text{H}}_{\text{2}}}{\text{C}}{{\text{H}}_3}[/tex]and one mole of [tex]{{\text{H}}_2}{\text{O}}[/tex]. So the number of moles of [tex]{\text{C}}{{\text{H}}_3}{\text{C}}{{\text{H}}_2}{\text{C}}{{\text{H}}_2}{\text{COOC}}{{\text{H}}_{\text{2}}}{\text{C}}{{\text{H}}_3}[/tex] produced by 0.0919 moles of   are also 0.0919 mol.

The formula to calculate the mass of [tex]{\text{C}}{{\text{H}}_3}{\text{C}}{{\text{H}}_2}{\text{C}}{{\text{H}}_2}{\text{COOC}}{{\text{H}}_{\text{2}}}{\text{C}}{{\text{H}}_3}[/tex] is as follows:

[tex]{\text{Mass of C}}{{\text{H}}_{\text{3}}}{\text{C}}{{\text{H}}_{\text{2}}}{\text{C}}{{\text{H}}_{\text{2}}}{\text{COOC}}{{\text{H}}_{\text{2}}}{\text{C}}{{\text{H}}_{\text{3}}}{\text{ = }}\left( {{\text{Moles of C}}{{\text{H}}_{\text{3}}}{\text{C}}{{\text{H}}_{\text{2}}}{\text{C}}{{\text{H}}_{\text{2}}}{\text{COOC}}{{\text{H}}_{\text{2}}}{\text{C}}{{\text{H}}_{\text{3}}}}[/tex]

[tex]\left( {{\text{Molar mass of C}}{{\text{H}}_{\text{3}}}{\text{C}}{{\text{H}}_{\text{2}}}{\text{C}}{{\text{H}}_{\text{2}}}{\text{COOC}}{{\text{H}}_{\text{2}}}{\text{C}}{{\text{H}}_{\text{3}}}} \right)[/tex]  ...... (2)

Substitute 0.0919 mol for the moles of [tex]{\text{C}}{{\text{H}}_3}{\text{C}}{{\text{H}}_2}{\text{C}}{{\text{H}}_2}{\text{COOC}}{{\text{H}}_{\text{2}}}{\text{C}}{{\text{H}}_3}[/tex] and 116.16 g/mol for the molar mass of [tex]{\text{C}}{{\text{H}}_3}{\text{C}}{{\text{H}}_2}{\text{C}}{{\text{H}}_2}{\text{COOC}}{{\text{H}}_{\text{2}}}{\text{C}}{{\text{H}}_3}[/tex] in equation (2).

[tex]\begin{aligned}{\text{Mass of C}}{{\text{H}}_{\text{3}}}{\text{C}}{{\text{H}}_{\text{2}}}{\text{C}}{{\text{H}}_{\text{2}}}{\text{COOC}}{{\text{H}}_{\text{2}}}{\text{C}}{{\text{H}}_{\text{3}}}&{\text{ = }}\left( {{\text{0}}{\text{.0919 mol}}} \right)\left({\frac{{{\text{116}}{\text{.16 g}}}}{{{\text{1 mol}}}}}\right)\\&=10.6{\text{75 g}}\\\end{aligned}[/tex]

Since the yield is 100 %, so the amount of ethyl butyrate produced is 10.675 g.

Learn more:

1. Calculate the moles of chlorine in 8 moles of carbon tetrachloride: https://brainly.com/question/3064603

2. Calculate the moles of ions in the solution: https://brainly.com/question/5950133

Answer details:

Grade: Senior School

Subject: Chemistry

Chapter: Mole concept

Keywords: stoichiometry, ethyl butyrate, 0.0919 mol, one mole, 116.16 g/mol, 88.11 g/mol, 10.675 g.

ACCESS MORE
EDU ACCESS