Answer:
The solution to the system of equations is:
[tex]x = -9[/tex], [tex]y=-3.4[/tex]
Step-by-step explanation:
Given the system of equations
-2.1x + 4y = 5.3
2.1x - 5.5y = -0.2
Solving the system of equations using the linear combination method
[tex]\begin{bmatrix}-2.1x+4y=5.3\\ 2.1x-5.5y=-0.2\end{bmatrix}[/tex]
adding the equations
[tex]2.1x-5.5y=-0.2[/tex]
[tex]+[/tex]
[tex]\underline{-2.1x+4y=5.3}[/tex]
[tex]-1.5y=5.1[/tex]
solving -1.5y = 5.1 for y
[tex]-1.5y=5.1[/tex]
Divide both sides by -1.5
[tex]\frac{-1.5y}{-1.5}=\frac{5.1}{-1.5}[/tex]
[tex]y=-3.4[/tex]
substitute y = -3.4 in 2.1x - 5.5y = -0.2
2.1x - 5.5y = -0.2
2.1x - 5.5(-3.4) = -0.2
2.1x + 18.7 = -0.2
2.1x = -0.2-18.7
2.1x = -18.9
Divide both sides by 2.1
[tex]\:\frac{2.1x}{2.1x}\:\:=\:\:\frac{-18.9}{2.1}[/tex]
[tex]x = -9[/tex]
Therefore, the solution to the system of equations is:
[tex]x = -9[/tex], [tex]y=-3.4[/tex]