Respuesta :
Answer:
(a) The list of angles based on amount of time in the air; 15° < 25° < 45° < 60°, < 80°
(b) The list of angles based on distance = 80° < 15° < 25° < 60° < 45°
Explanation:
(a) The given parameters are;
The angles in which the ball is thrown, θ = 45°, 15°, 60°, 25°, and 80°
The velocity with which the ball is thrown each time = The same velocity
The amount of time the projectile is in the air given as follows;
[tex]2 \cdot t = \dfrac{2\cdot u \cdot sin (\theta) }{g}[/tex]
Where;
t = Half the amount of time the projectile is in the air
θ = The angle of flight of the projectile
u = The initial velocity of the projectile = Constant for all angles in which the ball is thrown
g = The acceleration due to gravity = 9.8 m/s² = Constant
Therefore, we have;
When θ = 45°;
[tex]2 \cdot t = \dfrac{2\cdot u \cdot sin (45^ {\circ}) }{g} = \dfrac{2\cdot u \cdot \dfrac{\sqrt{2} }{2} }{g} = \dfrac{\sqrt{2} \cdot u }{g}[/tex]
When θ = 15°;
[tex]2 \cdot t = \dfrac{2\cdot u \cdot sin (15^ {\circ}) }{g} \approx \dfrac{0.517638\cdot u }{g}[/tex]
When θ = 60°;
[tex]2 \cdot t = \dfrac{2\cdot u \cdot sin (60^ {\circ}) }{g} = \dfrac{2\cdot u \cdot \dfrac{\sqrt{3} }{2} }{g} = \dfrac{\sqrt{3} \cdot u }{g}[/tex]
When θ = 25°;
[tex]2 \cdot t = \dfrac{2\cdot u \cdot sin (25^ {\circ}) }{g} = \dfrac{0.8452365\cdot u }{g}[/tex]
When θ = 80°;
[tex]2 \cdot t = \dfrac{2\cdot u \cdot sin (80^ {\circ}) }{g} = \dfrac{1.9696155\cdot u }{g}[/tex]
Therefore, the list of the angles based on the amount of time in the air from the shortest time to the longest time is given as follows;
List of angles based on amount of time in the air; 15° < 25° < 45° < 60°, < 80°
(b) The horizontal range, R is given as follows;
[tex]R = \dfrac{u^2 \cdot sin(2 \cdot \theta) }{g}[/tex]
When θ = 45°
[tex]R = \dfrac{u^2 \cdot sin(2 \times 45 ^{\circ}) }{g} = \dfrac{u^2 \cdot sin(90 ^{\circ}) }{g} = \dfrac{u^2 }{g}[/tex]
When θ = 15°
[tex]R = \dfrac{u^2 \cdot sin(2 \times 15 ^{\circ}) }{g} = \dfrac{u^2 \cdot sin(30 ^{\circ}) }{g} = \dfrac{1}{2} \cdot \dfrac{u^2 }{g} = 0.5 \cdot \dfrac{u^2 }{g}[/tex]
When θ = 60°;
[tex]R = \dfrac{u^2 \cdot sin(2 \times 60 ^{\circ}) }{g} = \dfrac{u^2 \cdot sin(120 ^{\circ}) }{g} = \dfrac{u^2 }{g} \cdot \dfrac{\sqrt{3} }{2} =0.866025 \cdot \dfrac{u^2 }{g}[/tex]
When θ = 25°;
[tex]R = \dfrac{u^2 \cdot sin(2 \times 25 ^{\circ}) }{g} = \dfrac{u^2 \cdot sin(50 ^{\circ}) }{g} = \dfrac{0.7660444 \cdot u^2 }{g}[/tex]
When θ = 80°
[tex]R = \dfrac{u^2 \cdot sin(2 \times 80 ^{\circ}) }{g} = \dfrac{u^2 \cdot sin(160 ^{\circ}) }{g} = \dfrac{0.34202 \cdot u^2 }{g}[/tex]
Therefore the list of angles based on the horizontal range the baseball travels from the shortest distance to the longest distance is given as follows;
List of angles based on distance = 80° < 15° < 25° < 60° < 45°.