If g(x)is the inverse of f(x) and f (x) = 4 x + 12, what ig(x)
g (x) = 12 x + 4
g (x) = one-fourth x minus 12
g (x) = x minus 3
g (x) = one-fourth x minus 3

Respuesta :

Answer:

The inverse of a given function

d) [tex]g(x) = \frac{1}{4} x - 3[/tex]

Step-by-step explanation:

Explanation:-

Given that f(x) = 4x + 12

  let y = 4 x + 12

     4 x = y - 12

        [tex]x = \frac{y-12}{4}[/tex]

        [tex]x = \frac{1}{4} y - 3[/tex]      

we know that   y = f(x)

                   ⇒  x = f⁻¹(y)

      [tex](f^{-1} y) = \frac{1}{4} y - 3[/tex]

Put  replace 'y' in 'x'

    [tex](f^{-1} x) = \frac{1}{4} x - 3[/tex]

Final answer:-

The inverse of a given function

[tex]g(x) = \frac{1}{4} x - 3[/tex]

Answer:

D

Step-by-step explanation:

Right on edge

ACCESS MORE