Find the value of 373 using the identity (x − y)3 = x3 − 3x2y + 3xy2 − y3. Show all work.


Hint: 373 = (40 − 3)3; therefore, x = 40 and y = 3.






Respuesta :

Answer:

[tex]37^3 = 50653[/tex]

Step-by-step explanation:

Given

[tex](x - y)^3 = x^3 - 3x^2y + 3xy^2 - y^3[/tex]

Required

Find [tex]37^3[/tex]

Express 37 as 40 - 3

So, we have:

[tex]37^3 = (40 - 3)^3[/tex]

Compare to [tex](x -y)^3[/tex]

[tex]x = 40\ and\ y = 3[/tex]

Substitute 40 for x and 3 for y in [tex](x - y)^3 = x^3 - 3x^2y + 3xy^2 - y^3[/tex]

[tex](40 - 3)^3 = 40^3 - 3*40^2*3 + 3*40*3^2 - 3^3[/tex]

Evaluate all exponents

[tex](40 - 3)^3 = 64000 - 3*1600*3 + 3*40*9 - 27[/tex]

Evaluate all products

[tex](40 - 3)^3 = 64000 - 14400 + 1080 - 27[/tex]

[tex](40 - 3)^3 = 50653[/tex]

Hence:

[tex]37^3 = 50653[/tex]

ACCESS MORE