Respuesta :
ANSWER: The correct answer is [tex]R(S(x))=x[/tex].
Explanation
The composition of a function of [tex]x[/tex] and its inverse will produce the independent variable [tex]x[/tex].
For instance, let [tex]f(x)=2x[/tex].
The inverse of this function is [tex]f^{-1}(x)=\frac{x}{2}[/tex].
If we compose these two functions, we will obtain;
[tex](f\circ f^{-1})(x)=f(f^{-1}(x))[/tex]
This means we have to substitute the whole inverse function in to the function itself.
[tex](f\circ f^{-1})(x)=f(f^{-1}(x))=2(\frac{x}{2})=x[/tex]
The other way round will also produce the same result.
Thus;
[tex](f^{-1}\circ f(x)=f^{-1}(f(x))=(\frac{2x}{2})=x[/tex]
This does not only apply to the given example it applies to all functions and their inverse.