Respuesta :

Answer:

Since [tex]\overrightarrow{AB} = \overrightarrow{DC}[/tex] and [tex]\overrightarrow{AD} = \overrightarrow{BC}[/tex], then the quadrilateral ABCD is a parallelogram.

Step-by-step explanation:

First, we label each point of the quadrilateral with the help of a graphing tool. If the quadrilateral ABCD is a parallelogram, then [tex]\overrightarrow{AB} = \overrightarrow{DC}[/tex] and [tex]\overrightarrow{AD} = \overrightarrow{BC}[/tex]. If we know that [tex]A(x,y) =(-1, 1)[/tex], [tex]B(x,y) =(-3,4)[/tex], [tex]C(x,y) = (1,5)[/tex] and [tex]D(x,y) = (3,2)[/tex], then the measure of each vector is, respectively:

[tex]\overrightarrow{AB} = (-3,4)-(-1,1)[/tex]

[tex]\overrightarrow{AB} = (-2, 3)[/tex]

[tex]\overrightarrow{DC} = (1,5)-(3,2)[/tex]

[tex]\overrightarrow{DC} = ( -2,3)[/tex]

[tex]\overrightarrow{AD} = (3,2)-(-1,1)[/tex]

[tex]\overrightarrow{AD} = (4, 1)[/tex]

[tex]\overrightarrow{BC} = (1,5)-(-3,4)[/tex]

[tex]\overrightarrow{BC} = (4, 1)[/tex]

Since [tex]\overrightarrow{AB} = \overrightarrow{DC}[/tex] and [tex]\overrightarrow{AD} = \overrightarrow{BC}[/tex], then the quadrilateral ABCD is a parallelogram.

Ver imagen xero099
ACCESS MORE