You push on the top edge of a 1.8 m tall solid circular cylinder of iron which is 4.00 cm in diameter. You push with a horizontal force of 900 N to make the top of the pole flex to the right.
Y = 10.0 x 1010 N/m2 B = 9.0 x 1010 N/m2 S = 4.0 x 1010 N/m2
How far does the top of the pole flex to the right?

Respuesta :

Answer:

[tex]\triangle x=3.2*10^-^5 m[/tex]

Explanation:

From the question we are told that

Height of circular cylinder is [tex]h= 1.8m[/tex]

Diameter of cylinder[tex]D=4cm=>0.04m[/tex]

Horizontal Force  [tex]F=900N[/tex]

[tex]Y = 10.0 *10^1^0 N/m^2 \\B = 9.0 * 10^1^0 N/m^2\\S = 4.0 * 10^1^0 N/m^2\\[/tex]

Generally the formula for shear modulus is mathematically represented by

[tex]G=\frac{\tau}{\gamma}[/tex]

Where

[tex]G=Shear modulus\\\tau= shear\ stress\\\gamma=shear strain[/tex]

[tex]G=\frac{F/A}{\triangle x/L}[/tex]

[tex]G=\frac{900/\pi r^2}{\triangle x/1.8}[/tex]

[tex]4.0*10^1^0=\frac{900/\pi r^2}{\triangle x/1.8}[/tex]

[tex]4.0*10^1^0=\frac{900}{\pi r^2} *\frac{1.8}{\triangle x}[/tex]

[tex]{\triangle x} =\frac{1620}{\pi r^2* 4.0*10^1^0}[/tex]

[tex]\triangle x=3.2*10^-^5 m[/tex]

ACCESS MORE