Answer:
The solutions of [tex]3\cdot x^{2}-5\cdot x -7 = 0[/tex] are [tex]x_{1} \approx 2.573[/tex] and [tex]x_{2} \approx -0.907[/tex].
Step-by-step explanation:
The statement is incomplete. The complete description will be shown below:
Solve the quadratic equation [tex]3\cdot x^{2}-5\cdot x -7 = 0[/tex]. Give your answers to 3 significant figures.
From Algebra we know that second order polynomials of the form [tex]a\cdot x^{2}+b\cdot x + c = 0[/tex], [tex]a \ne0[/tex] can be solved anatically by means of the Quadratic Formula, that is:
[tex]x = \frac{-b\pm\sqrt{b^{2}-4\cdot a\cdot c}}{2\cdot a}[/tex] (1)
Where [tex]a[/tex], [tex]b[/tex], [tex]c[/tex] are coefficients of the given polynomial.
If we know that [tex]a = 3[/tex], [tex]b = -5[/tex] and [tex]c = -7[/tex], then the roots of the polynomial are:
[tex]x_{1,2} = \frac{5\pm \sqrt{(-5)^{2}-4\cdot (3)\cdot (-7)}}{2\cdot (3)}[/tex]
[tex]x_{1,2} = \frac{5}{6}\pm \frac{\sqrt{109}}{6}[/tex]
That is,
[tex]x_{1} \approx 2.573[/tex] and [tex]x_{2} \approx -0.907[/tex]
The solutions of [tex]3\cdot x^{2}-5\cdot x -7 = 0[/tex] are [tex]x_{1} \approx 2.573[/tex] and [tex]x_{2} \approx -0.907[/tex].