Given:
A line passes through two points (7, 9) and (2, −9).
To find:
The slope intercept form of the line.
Solution:
A line passes through two points (7, 9) and (2, −9), so the equation of line is
[tex]y-y_1=\dfrac{y_2-y_1}{x_2-x_1}(x-x_1)[/tex]
[tex]y-9=\dfrac{-9-9}{2-7}(x-7)[/tex]
[tex]y-9=\dfrac{-18}{-5}(x-7)[/tex]
[tex]y-9=\dfrac{18}{5}(x-7)[/tex]
Using distributive property, we get
[tex]y-9=\dfrac{18}{5}(x)-\dfrac{126}{5}[/tex]
[tex]y=\dfrac{18}{5}(x)-\dfrac{126}{5}+9[/tex]
[tex]y=\dfrac{18}{5}x+\dfrac{-126+45}{5}[/tex]
[tex]y=\dfrac{18}{5}x-\dfrac{81}{5}[/tex]
Therefore, the slope intercept form of the line is [tex]y=\dfrac{18}{5}x-\dfrac{81}{5}[/tex].