Answer:
The root of x = -2 + √2
Step-by-step explanation:
Step(i):-
Given [tex]\sqrt{2x^{2} } + x +\sqrt{2} = 0[/tex]
⇒ [tex]\sqrt{2} } ( x^2 ) ^{\frac{1}{2} } + x +\sqrt{2} = 0[/tex]
⇒ [tex]\sqrt{2}x + x +\sqrt{2} = 0[/tex]
⇒ [tex](\sqrt{2} + 1) x = - \sqrt{2}[/tex]
[tex]x = \frac{-\sqrt{2} }{(\sqrt{2} + 1)}[/tex]
Step(ii):-
Rationalizing
[tex]x = \frac{-\sqrt{2} }{(\sqrt{2} + 1)} X \frac{(\sqrt{2} - 1)}{(\sqrt{2} - 1)}[/tex]
Apply ( a-b ) ( a+b) = a²-b²
[tex]x = \frac{-\sqrt{2}(\sqrt{2} -1) }{(\sqrt{2})^{2} - 1^{2} )} = \frac{-(2-\sqrt{2} }{2-1}[/tex]
The root of x = -2 + √2