Respuesta :

Answer:

The slope-intercept form of the line equation  is:

  • [tex]y=\:\frac{3}{2}x\:-\frac{1}{2}[/tex]

Step-by-step explanation:

The slope-intercept form of the line equation

y = mx+b

where

  • m is the slope
  • b is the y-intercept

Given the points

  • (-1, -2)
  • (3, 4)

Determining the slope between (-1, -2) and (3, 4)

[tex]\mathrm{Slope}=\frac{y_2-y_1}{x_2-x_1}[/tex]

[tex]\left(x_1,\:y_1\right)=\left(-1,\:-2\right),\:\left(x_2,\:y_2\right)=\left(3,\:4\right)[/tex]

[tex]m=\frac{4-\left(-2\right)}{3-\left(-1\right)}[/tex]

[tex]m=\frac{3}{2}[/tex]

Thus, the slope of the line is:

m = 3/2

substituting m = 3/2 and the point (3, 4) in the slope-intercept form of the line equation

y = mx+b

[tex]4=\frac{3}{2}\left(3\right)+b[/tex]

switch sides

[tex]\frac{3}{2}\left(3\right)+b=4[/tex]

[tex]\frac{9}{2}+b=4[/tex]

subtract 9/2 from both sides

[tex]\frac{9}{2}+b-\frac{9}{2}=4-\frac{9}{2}[/tex]

[tex]b=-\frac{1}{2}[/tex]

now substituting m = 3/2 and b = -1/2 in the slope-intercept form of the line equation

[tex]y = mx+b[/tex]

[tex]y=\:\frac{3}{2}x\:+\:\left(-\frac{1}{2}\right)[/tex]

[tex]y=\:\frac{3}{2}x\:-\frac{1}{2}[/tex]

Therefore, the slope-intercept form of the line equation  is:

  • [tex]y=\:\frac{3}{2}x\:-\frac{1}{2}[/tex]
ACCESS MORE