Respuesta :
Answer:
The slope-intercept form of the line equation is:
- [tex]y=\:\frac{3}{2}x\:-\frac{1}{2}[/tex]
Step-by-step explanation:
The slope-intercept form of the line equation
y = mx+b
where
- m is the slope
- b is the y-intercept
Given the points
- (-1, -2)
- (3, 4)
Determining the slope between (-1, -2) and (3, 4)
[tex]\mathrm{Slope}=\frac{y_2-y_1}{x_2-x_1}[/tex]
[tex]\left(x_1,\:y_1\right)=\left(-1,\:-2\right),\:\left(x_2,\:y_2\right)=\left(3,\:4\right)[/tex]
[tex]m=\frac{4-\left(-2\right)}{3-\left(-1\right)}[/tex]
[tex]m=\frac{3}{2}[/tex]
Thus, the slope of the line is:
m = 3/2
substituting m = 3/2 and the point (3, 4) in the slope-intercept form of the line equation
y = mx+b
[tex]4=\frac{3}{2}\left(3\right)+b[/tex]
switch sides
[tex]\frac{3}{2}\left(3\right)+b=4[/tex]
[tex]\frac{9}{2}+b=4[/tex]
subtract 9/2 from both sides
[tex]\frac{9}{2}+b-\frac{9}{2}=4-\frac{9}{2}[/tex]
[tex]b=-\frac{1}{2}[/tex]
now substituting m = 3/2 and b = -1/2 in the slope-intercept form of the line equation
[tex]y = mx+b[/tex]
[tex]y=\:\frac{3}{2}x\:+\:\left(-\frac{1}{2}\right)[/tex]
[tex]y=\:\frac{3}{2}x\:-\frac{1}{2}[/tex]
Therefore, the slope-intercept form of the line equation is:
- [tex]y=\:\frac{3}{2}x\:-\frac{1}{2}[/tex]