Respuesta :

Step-by-step explanation:

The given statement is :

[tex]\sqrt[4]{2} =2^{\dfrac{1}{4}}[/tex]

We need to select the correct simplification for this.

We know that, [tex]\sqrt[a]{x} =x^{\dfrac{1}{a}}[/tex]

So,

[tex]\sqrt[4]{2} =(2)^{\dfrac{1}{4}}[/tex]

Also, [tex](x^a)^b=x^{a\times b}[/tex]

So,

[tex](2^{\dfrac{1}{4}})^4=2^{\dfrac{1}{4}}\times 2^{\dfrac{1}{4}}\times 2^{\dfrac{1}{4}}\times 2^{\dfrac{1}{4}}\\\\=2^{\dfrac{1}{4}+\dfrac{1}{4}+\dfrac{1}{4}+\dfrac{1}{4}}\\\\=2^1\\\\=2[/tex]

So, these are the steps. Hence, the correct option is (B).

ACCESS MORE