solve the simultaneous linear equation

Answer:
x = 5 and y =-2
Step-by-step explanation:
2x+3y = 4
3x+2y = 11
Multiply first equation by 2 throughout and second equation by 3 we get
4x + 6y = 8
9x + 6y = 33
subtracting the equations we get
9x - 4x = 33-8
5x = 25
x = 5
substituting x= 5 in 1st equation
10 + 3y = 4
3y = 4-10
3y = -6
y = -6/3
y= -2
For first equation,
[tex]: \longmapsto \: \sf{2x \: = \: 4 - 3y} [/tex]
[tex]: \longmapsto \: \boxed{\sf{x \: = \: \dfrac{4 \: - \: 3y}{2}}}[/tex]
Now, substitute this value of x in second equation.
[tex]: \longmapsto \: \sf{3 \bigg( \dfrac{4 - 3y}{2} \bigg) + 2y \: = \: 11}[/tex]
[tex]: \longmapsto \: \sf{3 \times \bigg( \dfrac{4 - 3y}{2} \bigg) + 2y \: = \: 11}[/tex]
[tex]: \longmapsto \: \sf{ \dfrac{12 \: - \: 9y }{2} + 2y \: = \: 11}[/tex]
[tex]: \longmapsto \: \sf{ \dfrac{12 \: - \: 9y \: + 4y }{2} \: = \: 11}[/tex]
[tex]: \longmapsto \: \sf{ \dfrac{12 \: - \: 5y }{2} \: = \: 11}[/tex]
[tex]: \longmapsto \: \sf{ 12 \: - \: 5y \: = \: 11 \times2}[/tex]
[tex]: \longmapsto \: \sf{ 12 \: - \: 5y \: = \: 22}[/tex]
[tex]: \longmapsto \: \sf{ - \: 5y \: = \: 22 \: - \: 12}[/tex]
[tex]: \longmapsto \: \sf{ - \: 5y \: = \:10}[/tex]
[tex]: \longmapsto \: \sf{ y \: = \: - \dfrac{10}{5} }[/tex]
[tex]: \longmapsto \: \red{ \boxed{\bf{ y \: = \: - 2 }}}[/tex]
Finding out value of x :
[tex]: \longmapsto \: \sf{x \: = \: \dfrac{4 - 3( - 2)}{2} }[/tex]
[tex]: \longmapsto \: \sf{x \: = \: \dfrac{4 - 3 \times ( - 2)}{2} }[/tex]
[tex]: \longmapsto \: \sf{x \: = \: \dfrac{4 + 6}{2} }[/tex]
[tex]: \longmapsto \: \sf{x \: = \: \dfrac{10}{2} }[/tex]
[tex]: \longmapsto \: \sf{x \: = \: \cancel\dfrac{10}{2} }[/tex]
[tex]: \longmapsto \: \red{ \boxed{\bf{ x \: = \: 5 }}}[/tex]