Answer:
85% level of the confidence interval is
(26.337, 26.662)
Step-by-step explanation:
Explanation:-
Given the size of the sample 'n' = 295
Mean of the sample xā» = 26.5
The Standard deviation of the Population = 2.7
85% level of the confidence interval is determined by
[tex](x^{-} - Z_{0.15} \frac{S.D}{\sqrt{n} } , x^{-} + Z_{0.15} \frac{S.D}{\sqrt{n} })[/tex]
Critical value Zā.āā = 1.036
85% level of the confidence interval is determined by
[tex](x^{-} - Z_{0.15} \frac{S.D}{\sqrt{n} } , x^{-} + Z_{0.15} \frac{S.D}{\sqrt{n} })[/tex]
[tex](26.9 -1.036 \frac{2.7}{\sqrt{295} } , 26.5 + 1.036 \frac{2.7}{\sqrt{295} })[/tex]
( 26.5 - 0.1628 , 26.5+0.1628)
(26.3372,26.6628)