Respuesta :

Given:

Equation of a line is

[tex]x-3y=-18[/tex]

To find:

The slope of the line perpendicular to the given line.

Solution:

The slope of the equation [tex]ax+by=c[/tex] is

[tex]Slope=-\dfrac{a}{b}[/tex]

We have,

[tex]x-3y=-18[/tex]

Here, a=1, b=-3. So, slope of this line is

[tex]m_1=-\dfrac{1}{-3}[/tex]

[tex]m_1=\dfrac{1}{3}[/tex]

Product of slopes of two perpendicular lines is -1.

Let slope of perpendicular line is [tex]m_2[/tex].

[tex]m_1\cdot m_2=-1[/tex]

[tex]\dfrac{1}{3}\cdot m_2=-1[/tex]

[tex]m_2=-3[/tex]

Therefore, the slope of the perpendicular line is -3.

ACCESS MORE