Given:
Equation of a line is
[tex]x-3y=-18[/tex]
To find:
The slope of the line perpendicular to the given line.
Solution:
The slope of the equation [tex]ax+by=c[/tex] is
[tex]Slope=-\dfrac{a}{b}[/tex]
We have,
[tex]x-3y=-18[/tex]
Here, a=1, b=-3. So, slope of this line is
[tex]m_1=-\dfrac{1}{-3}[/tex]
[tex]m_1=\dfrac{1}{3}[/tex]
Product of slopes of two perpendicular lines is -1.
Let slope of perpendicular line is [tex]m_2[/tex].
[tex]m_1\cdot m_2=-1[/tex]
[tex]\dfrac{1}{3}\cdot m_2=-1[/tex]
[tex]m_2=-3[/tex]
Therefore, the slope of the perpendicular line is -3.