Answer:
[tex]-0.048<P_1-P_2<0.036[/tex]
Do not reject [tex]H_0:P_1-P_2=0[/tex]
Step-by-step explanation:
From the question we are told that
Sample size [tex]n_1=350[/tex]
Sample size [tex]n_2=250[/tex]
Sample proportion 1 [tex]\hat P= \frac{25}{350} =>0.07[/tex]
Sample proportion 2 [tex]\hat P= \frac{19}{250} =>0.076[/tex]
95% confidence interval
Generally for 95% confidence level
Level of significance
[tex]\alpha = 1-0.95=>0.05[/tex]
[tex]\alpha /2=\frac{0.05}{2} =>0.025[/tex]
Therefore
[tex]Z_a_/_2=1.96[/tex]
Generally the equation for confidence interval between [tex]P_1 - P_2[/tex] is mathematically given as
[tex](\hat P_1-\hat P_2)\pm Z_a_/_2\sqrt{\frac{\hat P_1(1-\hat P_1)}{n_1}+\frac{\hat P_2(1-\hat P_2)}{n_2} }[/tex]
[tex](0.07-0.076)\pm 1.96\sqrt{\frac{0.07(1-0.07)}{350}+\frac{0.076(1-0.076)}{250} }[/tex]
[tex](0.07-0.076)\pm 1.96\sqrt{4.66896*10^-^4 }[/tex]
[tex](-0.006)\pm 0.042[/tex]
[tex](-0.006)- 0.042=>-0.048[/tex]
[tex](-0.006)+ 0.042=>0.036[/tex]
Therefore
Confidence interval is
[tex]-0.048<P_1-P_2<0.036[/tex]
Conclusion
Given the confidence interval has zero
Therefore do not reject [tex]H_0:P_1-P_2=0[/tex]