Evaluate the difference quotient for the given function. Simplify your answer. f(x) = 1 x , f(x) − f(a) x − a

Respuesta :

Answer:

[tex]\frac{f(x) - f(a)}{x - a}=\frac{-1}{xa}[/tex]

Step-by-step explanation:

Given

[tex]f(x) = \frac{1}{x}[/tex]

Required

Evaluate [tex]\frac{f(x) - f(a)}{x - a}[/tex]

We have:

[tex]f(x) = \frac{1}{x}[/tex]

Next, we calculate f(a)

Substitute a for x in [tex]f(x) = \frac{1}{x}[/tex]

[tex]f(a) = \frac{1}{a}[/tex]

Substitute values for f(x) and f(a) in [tex]\frac{f(x) - f(a)}{x - a}[/tex]

[tex]\frac{\frac{1}{x} - \frac{1}{a}}{x - a}[/tex]

Take LCM of the numerator

[tex]\frac{\frac{a - x}{xa} }{x - a}[/tex]

Split:

[tex]\frac{a - x}{xa} /{x - a}[/tex]

Convert / to *

[tex]\frac{a - x}{xa} *\frac{1}{x - a}[/tex]

Express a - x as -(x-a)

[tex]\frac{-(x - a)}{xa} *\frac{1}{x - a}[/tex]

Divide numerator and denominator by x - a

[tex]\frac{-1}{xa} *\frac{1}{1}[/tex]

[tex]\frac{-1}{xa}[/tex]

Hence:

[tex]\frac{f(x) - f(a)}{x - a}=\frac{-1}{xa}[/tex]

ACCESS MORE