Answer:
(a) [tex](PO_4)^{3-}(aq)+3Ba^{2+}(aq)\rightarrow Ba_3(PO_4)_2(s)[/tex]
(b) 0.0136 moles.
Explanation:
Hello!
(a) In this case, for the described chemical reaction and the requirement of the net ionic equation, we first need the complete molecular one:
[tex]2Na_3(PO_4)(aq)+3Ba(NO_3)_2(aq)\rightarrow Ba_3(PO_4)_2(s)+6NaNO_3(aq)[/tex]
Now we split up the aqueous species into ions:
[tex]6Na^++(PO_4)^{3-}+3Ba^{2+}+6(NO_3)^-\rightarrow Ba_3(PO_4)_2(s)+6Na^++6(NO_3)^-[/tex]
It means we can cancel out both sodium and nitrate ions are they are the spectator ones, in order to get the net ionic equation:
[tex](PO_4)^{3-}(aq)+3Ba^{2+}(aq)\rightarrow Ba_3(PO_4)_2(s)[/tex]
(b) Now, since 4.10 grams of barium phosphate precipitate is produced, we can compute the moles of sodium phosphate that reacted by using the molar mass of the barium phosphate and the 1:2 mole ratio between them:
[tex]n_{Na_3PO_4}=4.10gBa_3(PO_4)_2*\frac{1molBa_3(PO_4)_2}{601.93gBa_3(PO_4)_2} *\frac{2molNa_3PO_4}{1molBa_3(PO_4)_2} \\\\n_{Na_3PO_4}=0.0136molNa_3PO_4[/tex]
Moreover, the molarity of such solution was:
[tex]M_{Na_3PO_4}=\frac{0.0136mol}{0.0300L} =0.454M[/tex]
Best regards!