the u.s post office will accept a box for shipment only if the sum of the length and girth (distance around) is at most 108 inches. Find the dimensions of the largest acceptable box with

Respuesta :

Answer:

The dimension of the largest acceptable box

[tex]18in\times 18 in\times 36 in[/tex]

Step-by-step explanation:

Let length of box,l=x

Side of square base=y

We are given that

x+4y=108

[tex]x=108-4y[/tex]

Now, volume of box,V=[tex]x^2 h=y^2x=y^2(108-4y)=108y^2-4y^3[/tex]

[tex]\frac{dV}{dy}=216y-12y^2[/tex]

[tex]\frac{d^2V}{dy^2}=216-24y[/tex]

[tex]\frac{dV}{dy}=0[/tex]

[tex]216y-12y^2=0[/tex]

[tex]12y(18-y)=0[/tex]

[tex]y=0,18[/tex]

y=0 is not possible

Therefore, y=18

[tex]\frac{d^2V}{dy^2}=216-24(18)<0[/tex]

Hence, the volume of box is maximum when y=18

Now, [tex]x=108-4(18)=36 in[/tex]

Hence, the dimension of the largest acceptable box

[tex]18in\times 18 in\times 36 in[/tex]

Answer:

18in* 18in* 36in

Step-by-step explanation:

ACCESS MORE