Respuesta :
Answer:
The dimension of the largest acceptable box
[tex]18in\times 18 in\times 36 in[/tex]
Step-by-step explanation:
Let length of box,l=x
Side of square base=y
We are given that
x+4y=108
[tex]x=108-4y[/tex]
Now, volume of box,V=[tex]x^2 h=y^2x=y^2(108-4y)=108y^2-4y^3[/tex]
[tex]\frac{dV}{dy}=216y-12y^2[/tex]
[tex]\frac{d^2V}{dy^2}=216-24y[/tex]
[tex]\frac{dV}{dy}=0[/tex]
[tex]216y-12y^2=0[/tex]
[tex]12y(18-y)=0[/tex]
[tex]y=0,18[/tex]
y=0 is not possible
Therefore, y=18
[tex]\frac{d^2V}{dy^2}=216-24(18)<0[/tex]
Hence, the volume of box is maximum when y=18
Now, [tex]x=108-4(18)=36 in[/tex]
Hence, the dimension of the largest acceptable box
[tex]18in\times 18 in\times 36 in[/tex]